新闻是有分量的

“工业4.0”是制造业基于大数据的转型_3

2019-04-22 11:53栏目:电商
TAG:

  德国在去年就提出了工业4.0的概念。他们认为,18世纪引入机械制造设备的工业是1.0时代,20世纪初的电气化与自动化是2.0时代,20世纪70年代开始的信息化是3.0时代,现在正在进入工业4.0时代,即实体物理世界和虚拟网络世界融合的时代。但是德国业界对工业4.0的响应者不多,原因之一是所谓虚拟网络-实体物理系统(Cyber-PhysicalSystem,CPS)融合的主要思想,美国早在若干年前就提出来了。

  2013年12月12日,美国白宫召开了第一次CPS成员会议。李杰教授作为专家组成员参加了会议。他们要讨论的事情,与德国的工业4.0其实是一样的内容。虽然德国先提出了概念,但他们刚刚起步、着手转型,而美国一直在做以CPS为概念的先进制造。或许正是这方面的原因,德国也于2013年10月邀请李杰教授前往分享他们在美国的成功案例。

  对于CPS的概念,李杰认为可以用日常生活中常见事物来解释。正如人们在facebook里建立的各种关系,在物理世界里是不可见的,但却可以得出这个人的生活社群、行为习惯、过往经历等等。同样,任何产品都有虚拟和实体两个世界(譬如苹果手机是实体,但是APPs是虚体),如何将虚拟世界里的关系透明化,正是工业4.0时代需要做的产品。未来产品例如机床、飞机、汽车等都应该会有实与虚的价值接合。这样的道理,是德国人提出概念的依据,但是李杰团队在美国已经自2001年开始积累大量和工业界合作建立成功案例。

  需要强调的是,德国提出的工业4.0和美国的CPS,核心要义就是制造业能基于数据分析的转型。

  传统制造的5M系统

  传统的制造可以描述为一个5M系统,它包含了材料(Material,特性和功能)、机器(Machine,精度和加工能力)、方法(Methods,效率和产能)、测量(Measurement,探测和改进)以及建模(Modeling,预测、优化和防范)。增量制造,通俗叫3D打印,也是运用集成的5M方法来生产产品的一个新范例,当然它的生产范围现阶段限于特定的低产量或者定制领域(比如国防或者医疗)的应用产品上。

  为使制造商更具竞争力,将先进的计算和信息物理融合系统结合起来,以适应或者利用最近的大数据环境是今天的制造业所需要的。随着智能传感器技术,如RFID技术的发展,收集数据已经变得很简单,但仍然存在的问题是,这些器件及数据是否在正确时间、为正确的目的、提供了正确的信息。除非数据被处理后可为需要者提供内容和意义,否则这些数据也是无用的。单纯将传感器连接到设备上或者将一台设备与另一台进行连接,是不会给用户提供足以做出更好决策所需信息的。

  制造信息系统的6C功能

  制造信息系统的基本定义可以用6C功能来进一步强化说明,它包含连接(Connection,传感器和网络)、云(Cloud,任何时间及需求的数据)、虚拟网络(Cyber,模式与记忆)、内容(Content,相关性和含义)、社群(Community,分享和交际)与客制化(customization,个性化服务与价值)。现有的制造系统需要对制造设备本身的以及制造过程中产生的数据进行更深入的分析。

  现在讲大数据的很多,但讲工业大数据的很少。工业大数据是由一个产品制造流程或者一个工业体系带出来的数据,健康管理、地震救治、银行运营等都会带来大数据,但是很少落地,不被人感觉到。工业4.0时代要做的产品,不光要有功能,还要有价值,而价值是通过处理数据得来的。有了这些,工业大数据就可以落地,产生实用价值。